Курс «Разработка и внедрение ML-решений» изучает подходы к разработке ML-решений + средства их реализации и внедрения в production. Вы пройдете все шаги создания ML-продукта от сбора данных до интеграции ML-модели в эксплуатацию. Познакомитесь с популярными инструментами командной разработки: Git, MLFlow, DVC. Узнаете главные архитектуры ML-решений и основы менеджмента DS-проектов.
Благодаря стремительному развитию машинного обучения, MLOps-инженеры сегодня — одни из самых востребованных и высокооплачиваемых специалистов в области Data Science.
MLOps – это культура и набор практик комплексного и автоматизированного управления жизненным циклом систем машинного обучения, объединяющие их разработку (Development) и операции эксплуатационного сопровождения (Operations), в т.ч. интеграцию, тестирование, выпуск, развертывание и управление инфраструктурой.
MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. К таким средствам относятся рассматриваемые в нашем курсе Git, MlFlow, DVC. MLOps позволит избежать распространенных ошибок и проблем, с которыми сталкиваются Data Scientist’ы, работающие по классическим фазам CRISP-DM. Организационные приемы MLOps должны быть независимыми от языка, фреймворка, платформы и инфраструктуры.
MLOps поможет улучшить следующие аспекты ML-проектов:
- унифицировать цикл выпуска моделей машинного обучения и созданных на их основе программных продуктов;
- автоматизировать тестирование артефактов Machine Learning, таких как проверка данных, тестирование самой ML-модели и ее интеграции в production-решение;
- внедрить гибкие принципы в проекты машинного обучения; поддерживать модели машинного обучения и наборы данных для их в системах CI/CD/CT;
- сократить технический долг по ML-моделям.
Цель курса:
Освоить базовые понятия и методы создания ML-продуктов от сбора данных до интеграции модели в продуктивную среду. Познакомиться с инструментами командной разработки (Git, MLFlow, DVC) и основами менеджмента ML-проектов.
Аудитория:
Python-разработчики, дата-аналитики, инженеры данных, менеджеры AI-продуктов и руководители (тимлиды) ML-команд.
Предварительный уровень подготовки:
- Опыт программирования на Python
- Основы анализа данных
Программа курса
Часть 1. Задачи и инструменты машинного обучения
Цель:
- дать представление о постановках задач машинного обучения, а также современных методах и инструментах их решения;
- продемонстрировать отличия от задач, для решения которых достаточно классических методов и алгоритмов (без ML)
Теоретическая часть: погружение в классические постановки задач машинного обучения, методы их решения, метрики качества для оценки точности результатов, знакомимся с инструментами
Практическая часть: освоение инструментарий и настраиваем среды разработки, решаем небольшой набор ознакомительных задач
Домашняя работа: решение задачи классификации/регрессии.
Часть 2. Основные этапы разработки ML-решений: от прототипа до подготовки к production
Цель:
- демонстрация подходов к прототипированию и основные требования, которым должен удовлетворять прототип;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в продуктивной среде;
Теоретическая часть: демонстрация процесса разработки ML-решения, от сбора данных до сериализации ML-модели.
Практическая часть: пример построения сквозного ML-решения.
Домашняя работа: построение индивидуального сквозного ML-решения.
Часть 3. MLOps. Экосистема разработки ML-продуктов
Цель:
- продемонстрировать необходимость инструментов командной разработки ML-решений;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в production;
Теоретическая часть: демонстрация примеров необходимости внедрения MLOps- инструментов.
Практическая часть: используем Git, MLFlow и dvc в сквозном примере
Домашняя работа: используем Git, MLFlow и dvc в индивидуальном сквозном ML-решении
Часть 4. Подходы к работе с данными на каждом этапе разработки ML-решений
Цель:
- показать основные типы данных и методы работы с ними;
- продемонстрировать подходы к поиску, хранению и обработке данных на этапах разработки ML-решений;
- основные вопросы разметки данных и их подготовки для обучения и использования в production
Теоретическая часть: знакомимся с данными в виде таблиц, текста, картинок, аудио. Отвечаем на вопросы как и чем обрабатывать и производить разметку в каждом отдельном случае. Погружаемся в мир Pandas, PostgreSQL, Apache Spark, Hive для обработки и хранения данных. Смотрим на AirFlow как на инструмент для планирования и выполнения задач по обработке данных.
Практическая часть: продолжаем развитие сквозного ML-решения, увеличиваем объем данных, переезжаем в БД, размечаем данные, настраиваем AirFlow на процесс получения и подготовки данных для обучения
Домашняя работа : развиваем индивидуальное сквозное ML-решение.
Часть 5. Обзор архитектурных решений для интеграции в production. Использование облачных сервисов
Цель:
- показать основные подходы по интеграции решений в production: монолит или микросервисы, высоконагруженные системы, локальный сервер или облачная платформа;
- продемонстрировать плюсы и минусы использования облачных сервисов на каждом этапе разработки ML-решений;
- погрузиться в особенности микросервисных архитектур c использованием контейнеризации;
- проработать вопрос использования коробочных решений на примере TF serving;
- интегрировать решение на облачную платформу AWS.
Теоретическая часть: знакомимся с интеграцией в production. Рассмотрим различные варианты архитектур ML-решений. Рассматриваем микросервисную архитектуры с использованием контейнеризации (Docker и K8s). Интеграция с Amazon Web Services.
Практическая часть: упаковываем сквозное ML-решение в контейнер и отправляем в AWS, обновляем текущее решение с добавлением TF serving.
Домашняя работа : развиваем индивидуальное сквозное ML-решение.
Часть 6. Обзор этапов и структуры ML-проекта* (входит в расширенную версию курса - 40 ак.часов)
Цель:
- показать весь ML-проект целиком: основные этапы и ресурсы, необходимые для реализации проекта;
- продемонстрировать цикличность в жизненном цикле ML-решения;
- отметить важность мониторинга и дэшбордов для поддержки и развития ML-решений.
Теоретическая часть: подвести итоги и взглянуть на ML-проект в целом: основные составляющие успешного проекта, количество и состав команды на каждом этапе разработки ML-решения, технологии и инструменты для разработки ML-решения и управления ML-проектом. Менеджмент DS-команды.
Практическая часть: настраиваем DVC и MLFlow, создаем репозиторий в Git, разворачиваем CI/CD для сквозного ML-решения
Домашняя работа : завершаем индивидуальный проект.
Программа читается совместно с Школа Больших Данных.
В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения.
В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных.
Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации.
В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных.
Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас!
В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на основании оценок, полученных обучающимся при проверке усвоения изучаемого материала на основании оценок за практические работы, выполненные в процессе обучения.
Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
- Нужна помощь в поиске курса?
Наша цель заключается в обеспечении подготовки специалистов, когда и где им это необходимо. Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса. Если вам нужен курс, который вы не видите на графике или у нас на сайте, или если Вы хотите пройти курс в другое время и в другом месте, пожалуйста, сообщите нам, по адресу mail@interface.ru или shopadmin@itshop.ru
- Поговорите со своим личным тренинг-менеджером!
Мы предоставляет Вам индивидуальное обслуживание. Если у вас есть потребность обсудить, все вопросы касательно обучения, свяжитесь, пожалуйста c нами по телефонам: +7 (495) 925-0049, + 7 (495) 229-0436. Или любым другим удобным для Вас средствами связи, которые Вы можете найти на сайтах www.interface.ru или www.itshop.ru
|